首页 | 本学科首页   官方微博 | 高级检索  
     


Compatibilized polypropylene nanocomposites containing expanded graphite and graphene nanoplatelets
Authors:Quang Binh Ho  Marianna Kontopoulou
Affiliation:Department of Chemical Engineering, Dupuis Hall, Queen's University, Kingston, Ontario, Canada
Abstract:We present a non-covalent compatibilization approach to prepare polypropylene (PP) composites containing expanded graphite (EG) and graphene nanoplatelets (GNPs) by melt compounding. This method involves PP matrix functionalization with pyridine (Py) moieties, which are capable of engaging in π-π interactions with the surface of the EG and GNPs. The addition of 10 wt% of PP grafted with amino-pyridine (PP-g-Py) to neat PP facilitated the break-up of EG particles, by intercalating between their layers and facilitating their separation into smaller tactoids. GNPs were prepared starting from EG through a thermomechanical exfoliation method. Addition of GNPs to PP resulted in well-dispersed platelets having aspect ratios as high as 40, whereas in the presence of the PP-g-Py compatibilizer the matrix contained sub-micron scale platelets. The electrical percolation thresholds were in the vicinity of 6 and 10 vol% in the compatibilized PP-EG and PP-GNP composites, respectively, and the maximum value of the electrical conductivity achieved was 10−1 S/m for the compatibilized GNP composites. Addition of GNPs resulted in increases in the flexural moduli by as much as 95% compared to the unfilled PP, whereas the impact strength remained unaffected up to 10 wt% GNP content.
Keywords:conducting polymers  functionalization of polymers  poly(propylene)  microstructure  nanocomposites
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号