首页 | 本学科首页   官方微博 | 高级检索  
     


Comparative modelling and analysis of amino acid substitutions suggests that the family of pregnancy-associated glycoproteins includes both active and inactive aspartic proteinases
Authors:Guruprasad, Kunchur   Blundell, Tom L.   Xie, Sancai   Green, Jonathan   Szafranska, Bozena   Nagel, Robert J.   McDowell, Karen   Baker, C.Ben   Roberts, R.Michael
Affiliation:1Laboratory of Molecular Biology, Department of Crystallography, Birkbeck College, University of London London WCIE 7HX, UK 2Department of Animal Sciences, University of Missouri 158 Animal Sciences Research Center, Columbia, MO 65211 USA 3Department of Biochemistry, University of Missouri 158 Animal Sciences Research Center, Columbia, MO 65211, USA 4Department of Veterinary Science, University of Kentucky Lexington, KY 40546, USA
Abstract:The pregnancy-associated glycoproteins (PAGs) are secretoryproducts synthesized by the outer epithelial cell layer (chorion)of the placentas of various ungulate species. The amino acidsequences of eight PAGs have been inferred from cloned cDNAof cattle and sheep, as well as of the non-ruminant pig andhorse. We compare the PAG sequences and present results of thethree-dimensional models of boPAG-1 and ovPAG-1 that were constructedon the basis of the crystal structures of homologous porcinepepsin and bovine chymosin using a rule-based comparative modellingapproach. Further, we compare peptide binding subsites definedby interactions with pepstatin and a decapeptide inhibitor (CH-66)modelled on the basis of crystal structures of other asparticproteinases. We have extended our analysis of the peptide bindingsubsites to the other PAG molecules of known sequence by aligningthe PAG sequences to the structural template derived from thepepsin family and by making use of the three-dimensional modelsof the boPAG-1 and ovPAG-1. The residues that are likely toaffect peptide binding in the boPAG-1, ovPAG-1 and other PAGmolecules have been identified. Sequence comparisons revealthat all PAG molecules may have evolved from a pepsin-like progenitormolecule with the equine PAG most closely related to the pepsins.The presence of substitutions at the S1 and other subsites relativeto pepsin make it unlikely that either bovine, ovine or theporcine PAG-1 have catalytic activity. Only two of the eightPAGs examined (porcine PAG-2 and equine PAG-1) retain featuresof active aspartic proteinases with pepsin-like activity. Ourresults indicate that in the PAGs so far characterized the peptidebinding specificities differ significantly from each other andfrom pepsin, despite their high sequence identities. Analysisof the various peptide binding subsites demonstrates why bothbovine and ovine PAG-1 are capable of binding pepstatin. Thestrong negative charge in the binding cleft of boPAG-1 and ovPAG-1indicates a preference for lysine- or arginine-rich peptides.PAGs represent a family where the possible peptide binding functionmay be retained through their binding specificities, but wherethe catalytic activity may be lost in some cases, such as theboPAG-1, ovPAG-1 and the poPAG-1.
Keywords:comparative protein modelling/  peptide binding subsites/  pregnancy-associated glycoproteins/  site-directed mutagenesis
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号