首页 | 本学科首页   官方微博 | 高级检索  
     


Structure and electrical conductivity of BaCe0.7In0.1A0.2O3?δ (A = Gd,Y) ceramics
Authors:Xiao-Ming Liu  Zhan-Guo Liu  Jia-Hu Ouyang  Yi-Jing Gu  Jun Xiang  Fu-Yao Yan
Affiliation:School of Materials Science and Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin 150001, China
Abstract:BaCe0.7In0.1A0.2O3?δ (A = Gd, Y) ceramics were synthesized by solid state reaction method. The microstructure and electrical properties of BaCe0.7In0.1A0.2O3?δ ceramics were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and complex impedance analysis at intermediate temperatures of 773–1073 K in different atmospheres. All BaCe0.7In0.1A0.2O3?δ ceramics exhibit a cubic perovskite structure. Relative densities of BaCe0.7In0.1A0.2O3?δ ceramics are above 92%. BaCe0.7In0.1Gd0.2O3?δ and BaCe0.7In0.1Y0.2O3?δ ceramics exhibit an excellent chemical stability against boiling water. The conductivity values of BaCe0.7In0.1Gd0.2O3?δ are higher than those of BaCe0.7In0.1Y0.2O3?δ in both air and dry hydrogen atmospheres. The highest conductivity is 4.6 × 10?2 S cm?1 for BaCe0.7In0.1Gd0.2O3?δ ceramic in air at 1073 K. BaCe0.7In0.1Gd0.2O3?δ ceramic with a conductivity value of 1.0 × 10?2 S cm?1 at 823 K in both air and dry hydrogen atmospheres is considered as a promising alternative for electrolytes of SOFC in view of decreasing the operating temperature and keeping both high conductivity and good chemical stability.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号