首页 | 本学科首页   官方微博 | 高级检索  
     


Strongdeco: Expansion of analytical,strongly correlated quantum states into a many-body basis
Authors:Bruno Juliá-Díaz  Tobias Graß
Affiliation:1. ICFO, The Institute of Photonic Sciences, 08860 Castelldefels, Spain;2. Dept. d?Estructura i Constituents de la Matèria, Universitat de Barcelona, 08028, Spain;1. Theoretical Physics, ETH Zurich, CH-8093 Zurich, Switzerland;2. Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
Abstract:We provide a Mathematica code for decomposing strongly correlated quantum states described by a first-quantized, analytical wave function into many-body Fock states. Within them, the single-particle occupations refer to the subset of Fock–Darwin functions with no nodes. Such states, commonly appearing in two-dimensional systems subjected to gauge fields, were first discussed in the context of quantum Hall physics and are nowadays very relevant in the field of ultracold quantum gases. As important examples, we explicitly apply our decomposition scheme to the prominent Laughlin and Pfaffian states. This allows for easily calculating the overlap between arbitrary states with these highly correlated test states, and thus provides a useful tool to classify correlated quantum systems. Furthermore, we can directly read off the angular momentum distribution of a state from its decomposition. Finally we make use of our code to calculate the normalization factors for Laughlin?s famous quasi-particle/quasi-hole excitations, from which we gain insight into the intriguing fractional behavior of these excitations.Program summaryProgram title: StrongdecoCatalogue identifier: AELA_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AELA_v1_0.htmlProgram obtainable from: CPC Program Library, Queen?s University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 5475No. of bytes in distributed program, including test data, etc.: 31 071Distribution format: tar.gzProgramming language: MathematicaComputer: Any computer on which Mathematica can be installedOperating system: Linux, Windows, MacClassification: 2.9Nature of problem: Analysis of strongly correlated quantum states.Solution method: The program makes use of the tools developed in Mathematica to deal with multivariate polynomials to decompose analytical strongly correlated states of bosons and fermions into a standard many-body basis. Operations with polynomials, determinants and permanents are the basic tools.Running time: The distributed notebook takes a couple of minutes to run.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号