首页 | 本学科首页   官方微博 | 高级检索  
     


Thermodynamic analysis of steam reforming and oxidative steam reforming of propane and butane for hydrogen production
Authors:Xiaoti Cui  Søren Knudsen Kær
Affiliation:Department of Energy Technology, Aalborg University, Pontoppidanstr, 111 9220, Aalborg, Denmark
Abstract:Thermodynamic analyses of cracking, partial oxidation (POX), steam reforming (SR) and oxidative steam reforming (OSR) of butane and propane (for comparison) were performed using the Gibbs free energy minimization method under the reaction conditions of T = 250–1000 °C, steam-to-carbon ratio (S/C) of 0.5–5 and O2/HC (hydrocarbon) ratio of 0–2.4. The simulations for the cracking and POX processes showed that olefins and acetylene can be easily generated through the cracking reactions and can be removed by adding an appropriate amount of oxygen. For SR and OSR of propane and butane, predicted carbon formation only occurred at low S/C ratios (<2) with the maximum level of carbon formation at 550–650 °C. For the thermal-neutral conditions, the TN temperatures decrease with the increase of the S/C ratio (except for O/C = 0.6) and the decrease of the O/C ratio. The simulated results for SR or OSR of propane and butane are very close under the investigated conditions.
Keywords:Thermodynamic analysis  Steam reforming  Oxidative steam reforming  Liquefied petroleum gas  Butane  Carbon formation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号