首页 | 本学科首页   官方微博 | 高级检索  
     


A novel maximum power point tracking technique based on fuzzy logic for photovoltaic systems
Authors:Sadeq D. Al-Majidi  Maysam F. Abbod  Hamed S. Al-Raweshidy
Affiliation:1. Department of Electronic and Computer Engineering, College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge UB8 3PH, United Kingdom;2. Department of Electrical, College of Engineering, University of Misan, Amarah 62001, Iraq
Abstract:Maximum power point tracking (MPPT) techniques are considered a crucial part in photovoltaic system design to maximise the output power of a photovoltaic array. Whilst several techniques have been designed, Perturb and Observe (P&O) is widely used for MPPT due to its low cost and simple implementation. Fuzzy logic (FL) is another common technique that achieves vastly improved performance for MPPT technique in terms of response speed and low fluctuation about the maximum power point. However, major issues of the conventional FL-MPPT are a drift problem associated with changing irradiance and complex implementation when compared with the P&O-MPPT. In this paper, a novel MPPT technique based on FL control and P&O algorithm is presented. The proposed method incorporates the advantages of the P&O-MPPT to account for slow and fast changes in solar irradiance and the reduced processing time for the FL-MPPT to address complex engineering problems when the membership functions are few. To evaluate the performance, the P&O-MPPT, FL-MPPT and the proposed method are simulated by a MATLAB-SIMULINK model for a grid-connected PV system. The EN 50530 standard test is used to calculate the efficiency of the proposed method under varying weather conditions. The simulation results demonstrate that the proposed technique accurately tracks the maximum power point and avoids the drift problem, whilst achieving efficiencies of greater than 99.6%.
Keywords:Drift problem  Fuzzy logic (FL)  Maximum power point tracking (MPPT)  Perturb and observe (P&O)  Photovoltaic (PV)  Power tracking efficiency
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号