首页 | 本学科首页   官方微博 | 高级检索  
     


Mathematical modeling of river ice processes
Authors:Hung Tao Shen
Affiliation:Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699-5710, USA
Abstract:River ice processes involve complex interactions between hydrodynamic, mechanical, and thermal processes. River ice research has largely been driven by engineering and environmental problems that concern society, including ice effects on flooding, hydropower, navigation, ecology, and the environment. Important findings on river ice research before 1980 have been summarized by Ashton (1986) and Donchenko (1987). Significant progress has been made in river ice research in the last three decades. Mathematical modeling has been an essential part of this progress. Mathematical models have been developed for various river ice processes. They not only helped to advance understanding of the physical processes by complementing field and laboratory studies, but also provided tools for planning and design of engineering projects. In this paper, models of various river ice processes during the winter, from freeze-up to breakup, are reviewed after a brief overview of river ice phenomena. Following the discussion of these ‘component’ models, a discussion on ‘comprehensive’ models and an analytical framework which links all river ice processes in a coherent manner is presented.
Keywords:River hydraulics   Ice dynamics   Ice jam   Numerical modeling   River ice   Thermal processes
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号