首页 | 本学科首页   官方微博 | 高级检索  
     

基于需求响应和多能互补的冷热电联产微网优化调度
引用本文:袁桂丽,董金凤,魏更,贾新潮. 基于需求响应和多能互补的冷热电联产微网优化调度[J]. 电力建设, 2019, 40(9): 64-72. DOI: 10.3969/j.issn.1000-7229.2019.09.008
作者姓名:袁桂丽  董金凤  魏更  贾新潮
作者单位:华北电力大学控制与计算机工程学院,北京市,102206;华北电力大学控制与计算机工程学院,北京市,102206;华北电力大学控制与计算机工程学院,北京市,102206;华北电力大学控制与计算机工程学院,北京市,102206
基金项目:海峡两岸应对气候变迁与能源可持续发展战略研究基金(2018-XY-22)
摘    要:兼顾电源侧多能互补与负荷侧需求响应(demand response,DR)是提升源荷侧协调发电能力的重要手段,可以促进电力削峰填谷,提高经济效益。针对冷、热、电负荷需求的随机性和不匹配性,考虑到人体对温度有一定的适应能力,文章将风、光发电机组与燃气轮机冷热电联产(combined cooling, heating and power,CCHP)系统结合,提出了一种基于综合需求响应的源荷协调CCHP微网,同时采用典型场景集考虑新能源出力的不确定性,建立优化调度模型。该模型以最小化系统经济成本为目标,利用免疫遗传算法求解,探讨了系统经济调度成本与不同需求响应模式以及温度偏差的关系,并对系统是否引入电加热设备进行讨论。算例分析表明,基于需求响应和多能互补的CCHP微网优化调度方法,能有效降低综合运行成本,具有显著的经济及社会价值。

关 键 词:冷热电联产(CCHP)  需求响应(DR)  经济优化调度模型  免疫遗传算法  舒适度  多场景

Optimal Scheduling of Combined Cooling Heating and Power Microgrid Based on Demand Response and Multi-Energy Coordination
YUAN Guili,DONG Jinfeng,WEI Geng,JIA Xinchao. Optimal Scheduling of Combined Cooling Heating and Power Microgrid Based on Demand Response and Multi-Energy Coordination[J]. Electric Power Construction, 2019, 40(9): 64-72. DOI: 10.3969/j.issn.1000-7229.2019.09.008
Authors:YUAN Guili  DONG Jinfeng  WEI Geng  JIA Xinchao
Affiliation:School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
Abstract:Taking into account the multi-complementary power supply side and the load-side demand response (DR) is an important means to improve the coordination power generation capacity of the source and the load side, and can promote peak-shaving and valley-filling and increase economic benefits. In view of the problems of the randomness and mismatch of cooling, heating and power load, considering that human has certain adaptability to the temperature, this paper combines photovoltaic, wind power and gas turbine combined cooling heating and power (CCHP), and proposes a source-load coordinated CCHP microgrid based on DR. Under the typical scene, considering the uncertainty of new energy output, an optimal scheduling model is established. The model aims to minimize the economic cost, and is solved by immune genetic algorithm. The relationship between dispatching cost and different DR modes, temperature deviation is discussed, and whether the system introduces electric heating equipment is discussed. The analysis of the example shows that the optimal scheduling method based on DR and multi-energy coordination for CCHP microgrid can effectively reduce cost and has significant economic and social value.
Keywords:combined cooling   heating and power(CCHP)  demand response(DR)  economic optimal scheduling model  immune genetic algorithm  comfort degree  multiple scenes  
本文献已被 万方数据 等数据库收录!
点击此处可从《电力建设》浏览原始摘要信息
点击此处可从《电力建设》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号