首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of Cooling Rate on Microstructure and Mechanical Properties of Sand-Casted Al-5.0Mg-0.6Mn-0.25Ce Alloy
Authors:Hua-Ping Tang  Qu-Dong Wang  Chuan Lei  Kui Wang  Bing Ye  Hai-Yan Jiang  Wen-Jiang Ding
Affiliation:1. National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai 200240, China;2. State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract:
This study examines the relationship among cooling rate, microstructure and mechanical properties of a sand-casted Al-5.0Mg-0.6Mn-0.25Ce (wt%) alloy subjected to T4 heat treatment (430 °C × 12 h + natural aging for 5 days), and the tested alloys with wall thickness varying from 5 to 50 mm were prepared. The results show that as the cooling rate increases from 0.22 to 7.65 K/s, the average secondary dendritic arm spacing (SDAS, λ2) decreases from 94.8 to 27.3 μm. The relation between SDAS and cooling rate can be expressed by an equation: $lambda_{2} = 53.0R_{text{c}}^{ - 0.345}$. Additionally, an increase in cooling rate was shown not only to reduce the amount of the secondary phases, but also to promote the transition from Al10Mn2Ce to α-Al24(Mn,Fe)6Si2 phase. Tensile tests show that as the cooling rate increases from 0.22 to 7.65 K/s, the ultimate tensile strength (UTS) increases from 146.3 to 241.0 MPa and the elongation (EL) increases sharply from 4.4 to 12.2% for the as-cast alloys. Relations of UTS and EL with SDAS were determined, and both the UTS and EL increase linearly with (1/λ2)0.5 and that these changes can be explained by strengthening mechanisms. Most eutectic Al3Mg2 phases were dissolved during T4 treatment, which in turn further improve the YS, UTS and EL. However, the increment percent of YS, UTS and EL is affected by the cooling rate.
Keywords:Al-Mg-Mn cast alloys  Cooling rate  Microstructure  Al10Mn2Ce  Mechanical properties  
点击此处可从《金属学报(英文版)》浏览原始摘要信息
点击此处可从《金属学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号