首页 | 本学科首页   官方微博 | 高级检索  
     


Solar multi-mode heating system based on latent heat thermal energy storage and its application
Authors:HE Feng  LI Tingxian  YAO Jinyu  WANG Ruzhu
Affiliation:1 Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China;
2 Jiangsu Unbeatable Energy Group Co., Ltd., Qidong 226200, Jiangsu, China
Abstract:To overcome the discontinuity and instability of solar energy and achieve energy supply and demand regulation and all-weather continuous heating supply of a solar heating system, a solar multi-mode heating method based on latent heat thermal energy storage is proposed. A solar heating system combining integrating vacuum-tube collectors with a latent heat thermal energy storage device is established in a building in Linzhi city, Tibet. The system can perform automatic control and operation of solar multi-mode heating according to the operating condition of solar collectors and external heating demand. Experimental studies show that the vacuum-tube solar collectors can work collaboratively with the latent heat thermal energy storage device. During the daytime, the latent heat thermal energy storage device performs a heat storage with an average charging power of 10.63 kW and a storage capacity of 92.67 kW·h, and the temperature platform of phase change can be apparently observed. At night, the thermal energy storage device can provide a 10-hour continuous discharging process with a total heat output of 85.23 kW·h at a stable discharging power and temperature. The charging-discharging efficiency of the storage device is 92%, and its heat storage density can reach 3.6 times that of a traditional hot-water storage tank. The results indicate that the solar heating system can achieve all-weather continuous heating supply. The present study can provide guidelines for implementation of solar heating in Tibet.
Keywords:solar heating  latent heat thermal energy storage device  multi-mode heating  thermal storage  thermal release  
点击此处可从《》浏览原始摘要信息
点击此处可从《》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号