首页 | 本学科首页   官方微博 | 高级检索  
     


Application of Calix[4]quinone in secondary batteries
Authors:SUN Huimin  YAN Bing  HUANG Weiwei  WANG Liqiu
Affiliation:1 Department of Mechanical and Electrical Engineering, Qinhuangdao Institute of Technology, Qinhuangdao 066100, Hebei, China;
2 School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066000, Hebei, China
Abstract:It is urgent to develop environmental friendly and sustainable large energy storage devices with superior performances. Conventional lithium-ion batteries based on transition metal oxide limited by their low theoretical specifc capacity and structure cannot meet the demand of future energy storage system. The development and application of new types of Li-organic materials, Li-S, Li-O2, flow battery and other batteries system will become the main focus of future energy systems. Especially, the conjugated carbonyl compounds with the merits of high theoretical capacity, flexible structure, fne redox property and green sustainability are potential energy storage materials for future. Calix4] quinone (C28H16O8, C4Q) is a quinone derivative of Calix4] arene, with a high theoretical capacity of 446 mA·h/g, which is signifcantly higher than that of traditional inorganic electrode materials. C4Q contains four p-quinone units linked by four methylene groups, the carbonyl groups are not sterically encumbered, hence the eight active centers are capable for reversible electrode reactions. Furthermore, the molecular structure of C4Q very stable and hardly decomposes in the electrochemical processes. More importantly, it is not limited to the reaction system theoretically by virtue of the electron transfer reaction, so it can be used as electrode materials for lithium, sodium, zinc and magnesium plasma batteries. In this paper, the applications of C4Q and its modifcation strategies are summarized.
Keywords:high capacity  organic cathode material  carbonyl compound  Calix[4]quinone  secondary battery  
点击此处可从《》浏览原始摘要信息
点击此处可从《》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号