首页 | 本学科首页   官方微博 | 高级检索  
     


Fabrication and modeling of high-frequency PZT composite thick film membrane resonators
Authors:Duval Fabrice F C  Dorey Robert A  Wright Robert W  Huang Zhaorong  Whatmore Roger W
Affiliation:School of Industrial and Manufacturing Science, Cranfield University, Bedfordshire, MK43 0AL, UK. f.f.c.duval@cranfield.ac.uk
Abstract:High-frequency, thickness mode resonators were fabricated using a 7 microm piezoelectric transducer (PZT) thick film that was produced using a modified composite ceramic sol-gel process. Initial studies dealt with the integration of the PZT thick film onto the substrate. Zirconium oxide (ZrO2) was selected as a diffusion barrier layer and gave good results when used in conjunction with silicon oxide (SiO2) as an etch stop layer. Using these conditions, devices were produced and the acoustic properties measured and modeled. The resonators showed a resonant frequency of about 200 MHz, an effective electromechanical coupling coefficient of 0.34, and a Q factor of 22. Modeling was based on a Mason-type model that gave good agreement between the experimental data and the simulations. The latter showed, for the PZT thick film, an electromechanical coupling coefficient of 0.35, a stiffness of 8.65 x 10(10) N x m(-2) and an e33,f piezoelectric coefficient of 9 C x m(-2).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号