首页 | 本学科首页   官方微博 | 高级检索  
     


Detection of 1,N6-ethenoadenine in rat urine after chloroethylene oxide exposure
Authors:S Holt  TY Yen  R Sangaiah  JA Swenberg
Affiliation:Department of Environmental Sciences and Engineering and Curriculum in Toxicology, University of North Carolina, Chapel Hill 27599-7400, USA.
Abstract:The four etheno adducts of vinyl chloride formed in DNA, 1,N6-ethenoadenine (epsilonA), 3,N4-ethenocytosine, 1,N2-ethenoguanine and N2,3-ethenoguanine were previously reported to be released from DNA by a family of enzymes in the base-excision repair pathway (Dosanjh et al., Proc. Natl Acad. Sci. USA, 91, 1024-1028, 1994; Hang et al., Carcinogenesis, 17, 155-157, 1996; Hang et al., Proc. Natl Acad. Sci. USA, 94, 12869-12874, 1997). Adducts excised from DNA by glycosylases are usually excreted in urine and have been reported to be potential biomarkers of DNA damage in exposed individuals. In this study, we report the detection of epsilonA in the urine of rats exposed to chloroethylene oxide (CEO) using immunoaffinity columns made with specific monoclonal antibodies for enrichment, followed by quantitation by HPLC with fluorescence detection. Chemical analysis of urine samples revealed the presence of a compound chromatographically identical to authentic epsilonA standard. This compound was confirmed by mass spectral analysis. EpsilonA was present in urine of control and CEO-treated rats, with the latter having up to 50-fold greater amounts. The cumulative excretion of epsilonA reached a plateau between 24 and 48 h post-exposure. While it is clear that CEO treatment results in increased excretion of epsilonA, the exact source of the adduct is unknown. When rats were administered epsilonA i.v., approximately 10% of the administered dose was excreted in urine. This research demonstrates that urinary excretion of epsilonA may be a potential biomarker for in vivo alkylation of DNA and nucleotide pools.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号