首页 | 本学科首页   官方微博 | 高级检索  
     


Studies on granuloma formation in Syrian hamsters experimentally infected with Schistosoma mansoni
Authors:A Abou Rashed  FM Senna  AH Sabry  TA Morsy
Affiliation:Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University 39762-9825, USA.
Abstract:Juvenile rats are more susceptible to the acute toxicity of the phosphorothionate insecticides parathion and chlorpyrifos than are adult rats. Developmental changes in brain acetylcholinesterase and hepatic aliesterase (carboxylesterase), cytochrome P450, and the P450-mediated metabolism of these two phosphorothionate insecticides were investigated in male Sprague-Dawley rats. Specific activities of acetylcholinesterase in cerebral cortex, but not medulla oblongata, and of liver aliesterases increased with age, indicating the presence of both more target esterases and more protective esterases, respectively, in the adult compared to the juvenile animal. Sensitivity of the brain acetylcholinesterase to inhibition by paraoxon and chlorpyrifosoxon, as measured by IC50 values, did not change significantly with age, whereas the hepatic aliesterase sensitivity to inhibition decreased with age. Progressive increases in activities of P450-mediated activation (desulfuration) (6- to 14-fold) and detoxication (dearylation) (2- to 4-fold), as well as concentrations of P450 (7-fold) and protein (2-fold), were observed between neonate and adult hepatic microsomes. Microsomal pentoxyresorufin O-dealkylase activity followed a developmental pattern similar to desulfuration and dearylation, displaying a 16-fold increase between neonates and adults. However, microsomal ethoxyresorufin O-deethylase activity increased until 21 days of age, displaying a 16-fold increase, then decreased in adulthood to a level 10-fold higher than neonates. These results indicate that target enzyme sensitivity is not responsible for age-related toxicity differences, nor is the potential for hepatic bioactivation, whereas lower levels of hepatic aliesterase-mediated protection and P450-mediated dearylation probably contribute significantly to the greater sensitivity of juveniles to phosphorothionate toxicity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号