首页 | 本学科首页   官方微博 | 高级检索  
     

新安江模型参数优选的改进粒子群算法
引用本文:江燕,刘昌明,胡铁松,武夏宁. 新安江模型参数优选的改进粒子群算法[J]. 水利学报, 2007, 38(10): 1200-1206
作者姓名:江燕  刘昌明  胡铁松  武夏宁
作者单位:北京师范大学,水科学研究院,北京,100875;武汉大学,资源与水电工程科学国家重点实验室,湖北,武汉,430072;中国水利水电建设集团公司,北京,100044
摘    要:借鉴竞争演化和多种群混合的思想,对粒子群算法(PSO)进行改进,建立并行种群混合进化的粒子群算法(PMSE-PSO)和序列主-从种群混合进行的粒子群算法(SMSE-PSO)。数值模拟结果表明,这两种改进的粒子群算法具有较高的计算效率、较强的自适应性和稳定性。将PMSE-PSO和SMSE-PSO应用于新安江模型的参数优选中,通过与PSO和SCE-UA的比较可以看出,PMSE-PSO和SMSE-PSO不仅具有较好的全局优化性能和稳定性,而且在调用目标函数次数相同的情况下精度较高,是一种有效的新安江模型参数优选方法。

关 键 词:参数优选  新安江模型  全局优化  粒子群算法  多种群混合进化
文章编号:0559-9350(2007)10-1200-07
修稿时间:2006-09-26

Improved particle swarm optimization for parameter calibration of Xin'anjiang model
JIANG Yan. Improved particle swarm optimization for parameter calibration of Xin'anjiang model[J]. Journal of Hydraulic Engineering, 2007, 38(10): 1200-1206
Authors:JIANG Yan
Affiliation:1. Beijing Normal University, Beoijing 100875, China ; 2. Wuhan University, Wuhan 430072, China 3. Sinohydro Corporation Limited, Beifing 100044 China
Abstract:Two improved particle swarm optimization algorithm(PSO) including the parallel-swarms shuffling evolution algorithm(PMSE-PSO) and serial master-slaver swarms shuffing evolution algorithm(SMSE-PSO) were established by combining the particle swarm optimization with competitive evolution and concept of complex shuffling.The comparison with traditional PSO and shuffled complex evaluation algorithm(SCE-UA) shows that both these new algorithms can improve the efficiency,self-adaptability and stability of computation.The application of these improved algorithms to parameters optimization of Xin'anjiang model shows that both PMSE-PSO and SMSE-PSO remarkably improves the computation efficiency and accuracy.
Keywords:parameter optimization  Xin'anjiang model  improved particle swarm optimization algorithm(PSO)  parallel-swamis shuffling evolution
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《水利学报》浏览原始摘要信息
点击此处可从《水利学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号