首页 | 本学科首页   官方微博 | 高级检索  
     

基于Logistic函数的贝叶斯概率矩阵分解算法
引用本文:方耀宁, 郭云飞, 兰巨龙. 基于Logistic函数的贝叶斯概率矩阵分解算法[J]. 电子与信息学报, 2014, 36(3): 715-720. doi: 10.3724/SP.J.1146.2013.00534
作者姓名:方耀宁  郭云飞  兰巨龙
作者单位:国家数字交换系统工程技术研究中心;
基金项目:国家973计划项目(2012CB315901);国家863计划项目(2011AA01A103)资助课题
摘    要:在协同过滤推荐系统中,矩阵分解是一种非常有效的工具。贝叶斯概率矩阵分解模型具有预测精度高的优点,但不能表示潜在因子之间的非线性关系。针对该问题,该文提出一种基于Logistic函数的改进贝叶斯概率矩阵分解模型,并使用马尔科夫链蒙特卡罗方法进行训练。在两组真实数据集合上的实验表明,基于Logistic函数的贝叶斯概率矩阵分解算法能够明显提高预测准确性,有效缓解数据稀疏性问题。

关 键 词:推荐系统   信息处理   协同过滤   贝叶斯概率矩阵分解   Logistic函数
收稿时间:2013-04-19
修稿时间:2013-07-29

A Bayesian Probabilistic Matrix Factorization Algorithm Based on Logistic Function
Fang Yao-Ning, Guo Yun-Fei, Lan Ju-Long. A Bayesian Probabilistic Matrix Factorization Algorithm Based on Logistic Function[J]. Journal of Electronics & Information Technology, 2014, 36(3): 715-720. doi: 10.3724/SP.J.1146.2013.00534
Authors:Fang Yao-Ning  Guo Yun-Fei  Lan Ju-Long
Abstract:The matrix factorization is one of the most powerful tools in collaborative filtering recommender systems. The Bayesian Probabilistic Matrix Factorization (BPMF) model has advantages of high prediction accuracy, but can not capture non-linear relationships between latent factors. To address this problem, an improved model is proposed based on the Logistic function and Markov Chain Monte Carlo is used to train the proposed model. Experiments on two real-world benchmark datasets show significant improvements in prediction accuracy compared with several state-of-the-art methods for recommendation tasks.
Keywords:Recommender system  Information processing  Collaborative filtering  Bayesian Probabilistic Matrix Factorization (BPMF)  Logistic function
本文献已被 CNKI 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号