首页 | 本学科首页   官方微博 | 高级检索  
     


Elastic stiffness model for the critical temperature Tc of Nb3Sn including strain dependence
Authors:W.Denis Markiewicz
Affiliation:National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
Abstract:A calculation is established for the critical temperature Tc of the superconductor Nb3Sn that includes the dependence on applied mechanical strain. The calculation employs the formalism of strong coupling phonon superconductivity, as usually given in frequency space. The directional nature of strain is included by expressing the equations of strong coupling in wave vector space. The relation between wave number and frequency is provided by the dispersion relations incorporating the effective elastic constants for the symmetry directions of the cubic crystal. An analytical formalism is established in which the elastic constants are derived in a unified way from an assumed strain energy potential function. The form of the strain energy potential is governed by the cubic symmetry. The scalar invariants of the strain tensor under the cubic symmetry group are determined as a set of basis functions for the strain energy potential. In the harmonic approximation, the relation between the strain energy function and the elastic constants determines the harmonic amplitudes of the strain potential from the measured dispersion relations. The electron-phonon coupling characteristic is approximated in a simple analytic form determined by inspection of the experimentally determined tunneling and phonon density of states. The critical temperature is calculated, through the equations of strong coupling, as a sum over the crystal symmetry directions. The anharmonic terms of the strain energy potential are introduced as the source of the strain dependence of the critical temperature. The allowed form of the anharmonic terms is again governed by cubic symmetry. The amplitudes of the anharmonic terms are determined from the strain dependence characteristics of single crystals and composite superconductors. The calculations are found to represent the observed strain dependence well with a strain energy function that contains three scalar invariants of the strain tensor, including the spherical (hydrostatic) strain invariant, and the principle parts of the second and third invariants of the deviatoric strain tensor. The formalism is applied to the analysis of composite conductors. The characteristics of the strain dependence of wire and tape geometries under longitudinal and transverse loads are related to the symmetry of the conductor and direction of applied load. Implications of conductor symmetry and constraint on the measurement of the strain dependent properties are identified.
Keywords:Superconductor   Critical temperature   Strain effects
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号