首页 | 本学科首页   官方微博 | 高级检索  
     


A novel alkaline air electrode based on a combined use of cobalt hexadecafluoro-phthalocyanine and manganese oxide
Authors:Lanqun Mao  Tadashi Sotomura
Affiliation:a Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
b Advanced Technology Research Laboratory, Matsushita Electric Industrial Co. Ltd., 3-4 Hikaridai, Soraku-gun, Seika-cho, Kyoto 619-0237, Japan
Abstract:Electrocatalytic reduction of O2 with dual catalysts of cobalt 1, 2, 3, 4, 8, 9, 10, 11, 15, 16, 17, 18, 22, 23, 24, 25-hexadecafluoro-29 H, 31H-phthalocyanine (CoPcF16) and MnOOH was studied in alkaline media with cyclic and rotating ring-disk electrode (RRDE) voltammetry. Cyclic voltammetric results show that CoPcF16 possesses a good catalytic activity for redox-catalyzing an apparent two-electron reduction of O2 with superoxide (O2radical dot) as an intermediate. The combined use of CoPcF16 with MnOOH which shows a bifunctional catalytic activity toward the sequential disproportionations of the reduction intermediate and product, i.e. O2radical dot and peroxide (HO2), eventually enables an apparent four-electron reduction of O2 to be achieved at a positively-shifted potential in alkaline media. The possibility of utilizing the dual catalysts for the development of practical alkaline air electrodes was further explored by confining the catalysts in active carbon (AC) and carbon black (CB) matrices that are generally used as the substrate for constructing air electrodes. The RRDE voltammetric results suggest that an apparent four-electron reduction of O2 reduction can be obtained at the as-prepared carbon-based air electrode at a potential close to that at the Pt-based air electrode, and that the as-prepared electrode shows a high tolerance against methanol and glucose crossover.
Keywords:Electrocatalysis   O2 reduction   MnOOH   Hexadecafluoro-phthalocyanine
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号