Effects of substrates on the capacitive performance of RuOx·nH2O and activated carbon-RuOx electrodes for supercapacitors |
| |
Authors: | Chi-Chang Hu Wei-Chun Chen |
| |
Affiliation: | Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 621, Taiwan, ROC |
| |
Abstract: | The electrochemical energy storage and delivery on the electrodes composed of hydrous ruthenium oxide (RuOx·nH2O) or activated carbon-hydrous ruthenium oxide (AC-RuOx) composites are found to strongly depend on the substrate employed. The contact resistance at the active material-graphite interface is much lower than that at the active material-stainless steel (SS) mesh interface. Thin films of gold plus RuOx·nH2O deposited on SS meshes (RuOx/Au/SS) are found to greatly improve the poor contact between SS meshes and electrode materials. The maximum specific capacitance (CS,RuOx) of RuOx·nH2O, 1580 F g−1 (measured at 1 mV s−1), very close to the theoretic value, was obtained from an AC-RuOx/RuOx/Au/SS electrode with 10 wt.% sol-gel-derived RuOx·nH2O annealed in air at 200 °C for 2 h. The highly electrochemical reversibility, high-power characteristics, good stability, and improved frequency response of this AC-RuOx/RuOx/Au/SS electrode demonstrate its promising application potential in supercapacitors. The ultrahigh specific capacitance of RuOx·nH2O probably results from the uniform size distribution of RuOx·nH2O nanoparticles, ranged from 1.5 to 3 nm which is clearly observed from the high-resolution transmission electron microscopy (HRTEM). |
| |
Keywords: | RuOx· nH2O nanoparticles Substrate Activated carbon Supercapacitor |
本文献已被 ScienceDirect 等数据库收录! |
|