首页 | 本学科首页   官方微博 | 高级检索  
     


Simulation of quench for the cable-in-conduit-conductor in HT-7U superconducting Tokamak magnets using porous medium model
Authors:Qiuliang Wang  Peide Weng
Affiliation:a Institute of Electrical Engineering, Chinese Academy of Sciences, Applied Superconductivity Division, P.O. Box 2703, Beijing 100080, PR China
b Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 1126, PR China
c Huazhong University of Science and Technology, Hubei 430074, China
Abstract:A cable-in-conduit-conductor (CICC) consists of superconducting cable, copper, supercritical helium and conduit. To keep the operating temperature of superconducting cable lower than its current sharing temperature, the supercritical helium is forced flow through the CICC. The supercritical helium through the cable bundle has the complex directional changes due to the interaction between the supercritical helium and strands. The structure of CICC is characterized with the porous medium. The quench characteristics of CICC are analyzed by the model which the temperature difference between the strands and helium is assumed to be very small due to the heating induced flow to generate high heat transfer coefficient of supercritical helium. A moving mesh method is developed for the numerical solution of the problem with the steep drop for temperature and density of supercritical helium in the short front region of the normal zone. The computational mesh is obtained by equidistribution of a monitor function tailored for the functional variation of the arguments for density, temperature and velocity of supercritical helium. Existence and uniqueness of the discretised equations using a moving mesh are also established. The coupled equation for porous medium is solved using the finite element method with the artificial viscosity term. The validation of the code is tested by comparing it with the other codes with good accuracy. The converged properties of numerical solution due to quench in CICC are studied. We present preliminary estimates of the maximum conductor temperature rise and helium pressure during a quench in the inner layer of toroidal field (TF) magnet for HT-7U. The quench scenarios with different dump time constants of 6.25, 12, and 21.1 s are considered. The goal of such work is to guide the protection scheme and a detailed prediction of the quench evolution of magnet.
Keywords:Porous medium   Moving mesh FEM method   Artificial viscosity   Cable-in-conduit-conductor
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号