首页 | 本学科首页   官方微博 | 高级检索  
     


Biocompatibility of TiO2 nanotubes fabricated on Ti using different surfactant additives in electrolyte
Authors:Madhav Prasad Neupane  Il Song Park  Tae Sung Bae  Ho Keun Yi  Fumio Watari  Min Ho Lee
Affiliation:1. Department of Dental Biomaterials and Institute of Oral Bioscience, Brain Korea 21 Project, School of Dentistry, Chonbuk National University, Jeonju 561-756, South Korea;2. Department of Oral Biochemistry, BK21 Program, School of Dentistry, Chonbuk National University, Jeonju 561-756, South Korea;3. Biomedical, Dental Materials and Engineering, Department of Oral Health Science, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
Abstract:This study examined the in vitro cell-material interactions on four different types of titanium surfaces: a polished Ti surface, TiO2 nanotube surfaces fabricated in a fluorinated glycerol solution (TN), fluorinated glycerol solution with 1 wt% anionic surfactant sodium dodecyl sulphate (TN-SDS), and fluorinated glycerol solution with 1 wt% cationic surfactant cetyl trimethyl ammonium bromide (TN-CTAB), respectively. The surfaces exhibited distinct surface morphologies and geometrical features. Surface energy calculation shows that TN surface enhances the hydrophilic character by significantly increasing the surface energy. The osteoblast cell growth behavior on the four different surfaces was examined using the MC3T3-E1 cell line for 1 day. When the anodized surfaces were compared for the cell-materials interaction, each of the surfaces showed different properties that affected the cell–material interactions. Proliferation of the cells was noticed with distinctive cell-to-cell attachment on the TN surfaces. Good cellular adhesion with extracellular matrix extensions between the cells was noticed in the TN samples. The TiO2 nanotubes grown in the surfactant-assisted fluorinated electrolyte did not show significant cell growth on the surface and some cell death was observed. The cell adhesion, differentiation and alkaline phosphatase activity were more pronounced on the TN surface. The MTT assays also revealed an increase in living cell density and proliferation on the TN surfaces. Overall, a rough surface morphology and surface energy are important factors for better cell material interactions.
Keywords:Cell material interactions  Proliferation  Osteoblast cell  Surface roughness  Alkaline phosphatase
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号