首页 | 本学科首页   官方微博 | 高级检索  
     


Physicochemical characterization of Fe3O4/SiO2/Au multilayer nanostructure
Authors:Mohammad E. Khosroshahi  Lida Ghazanfari
Affiliation:Amirkabir University of Technology, Faculty of Biomedical Engineering, Biomaterials Group, Laser and Nanobiophotonics Lab., Tehran, Iran
Abstract:The purpose of this research was to synthesize and characterize gold-coated Fe3O4/SiO2 nanoshells for biomedical applications. Magnetite nanoparticles (NPs) were prepared using co-precipitation method. Smaller particles were synthesized by decreasing the NaOH concentration, which in our case this corresponded to 35 nm using 0.9 M of NaOH at 750 rpm with a specific surface area of 41 m2 g−1. For uncoated Fe3O4 NPs, the results showed an octahedral geometry with saturation magnetization range of 80–100 emu g−1 and coercivity of 80–120 Oe for particles between 35 and 96 nm, respectively. The magnetic NPs were modified with a thin layer of silica using Stober method. Small gold colloids (1–3 nm) were synthesized using Duff method and covered the amino functionalized particle surface. Magnetic and optical properties of gold nanoshells were assessed using Brunauer–Emmett–Teller (BET), vibrating sample magnetometer (VSM), UV–Vis spectrophotometer, atomic and magnetic force microscope (AFM, MFM), and transmission electron microscope (TEM). Based on the X-ray diffraction (XRD) results, three main peaks of Au (1 1 1), (2 0 0) and (2 2 0) were identified. The formation of each layer of a nanoshell is also demonstrated by Fourier transform infrared (FTIR) results. The Fe3O4/SiO2/Au nanostructures, with 85 nm as particle size, exhibited an absorption peak at ∼550 nm with a magnetization value of 1.3 emu g−1 with a specific surface area of 71 m2 g−1.
Keywords:Nanostructures   Magnetic materials   Optical properties   Atomic force microscopy (AFM)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号