首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of particle size and co-deposition technique on hardness and corrosion properties of Ni–Co/SiC composite coatings
Authors:Babak Bakhit  Alireza Akbari
Affiliation:Surface Engineering Group, Advanced Materials Research Center, Faculty of Materials Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
Abstract:Ni–Co/SiC alloy matrix composite coatings were electrodeposited in a modified Watt's bath containing micro and nano sized SiC particles by using conventional electro-co-deposition (CECD) and sediment co-deposition (SCD) techniques. The deposits were characterized using SEM, EDX and XRD analyses, and microhardness and potentiodynamic polarization measurements. The maximum incorporation of the SiC micro- and nano-particles was obtained using the SCD technique at deposition current densities of 2 and 3 A/dm2, respectively. It was found that in the composite coatings, incorporation of SiC particles improves the microhardness of unalloyed Ni and Ni–Co alloy matrices. The nanocomposite coatings exhibit higher microhardness values than microcomposite ones. The potentiodynamic polarization measurements in 3.5% NaCl solution revealed that the corrosion resistance of the Ni–Co/SiC nanocomposite coatings is much higher than the Ni–Co alloy and Ni–Co/SiC microcomposite coatings. Moreover, corrosion resistance of Ni–Co/SiC nanocomposite coatings deposited by SCD technique is higher than the ones deposited by CECD technique. Corrosion resistance of the studied Ni–Co/SiC composite coatings was considerably affected by Co content, SiC particle size and content. Hardness enhancement was related to the structural features, and corrosion behavior was discussed based on the formation of corrosion micro cells, diminishing the effective metallic area, and increasing and hindering the corrosion paths.
Keywords:Ni&ndash  Co/SiC composite coatings  Nanocomposite coatings  Sediment co-deposition  Microhardness  Corrosion resistance
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号