首页 | 本学科首页   官方微博 | 高级检索  
     


The multistage homotopy analysis method: application to a biochemical reaction model of fractional order
Abstract:In this paper, a new reliable algorithm called the multistage homotopy analysis method (MHAM) based on an adaptation of the standard homotopy analysis method (HAM) is presented to solve a time-fractional enzyme kinetics. This enzyme–substrate reaction is formed by a system of nonlinear ordinary differential equations of fractional order. The new algorithm is only a simple modification of the HAM, in which it is treated as an algorithm in a sequence of small intervals (i.e. time step) for finding accurate approximate solutions to the corresponding systems. Numerical comparisons between the MHAM and the classical fourth-order Runge–Kutta method in the case of integer-order derivatives reveal that the new technique is a promising tool for nonlinear systems of integer and fractional order.
Keywords:fractional differential equations  enzyme kinetics  homotopy analysis method  numerical solution  mathematical modelling  multistage homotopy method  Runge–Kutta method
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号