Abstract: | This paper focuses on identification problems for Hammerstein systems with non-uniform sampling. By using the over-parameterization technique, we derive a linear regressive identification model with different input updating rates. To solve the identification problem of Hammerstein output error systems with the unmeasurable variables in the information vector, the least-squares-based iterative algorithm is presented by replacing the unmeasurable variables with their corresponding iterative estimates. The performances of the proposed algorithm are analysed and compared by using a numerical example. |