Abstract: | Support vector machines (SVM) based on the statistical learning theory is currently one of the most popular and efficient approaches for pattern recognition problem, because of their remarkable performance in terms of prediction accuracy. It is, however, required to choose a proper normalization method for input vectors in order to improve the system performance. Various normalization methods for SVMs have been studied in this research and the results showed that the normalization methods could affect the prediction performance. The results could be useful for determining a proper normalization method to achieve the best performance in SVMs. |