首页 | 本学科首页   官方微博 | 高级检索  
     


Biswapped networks: a family of interconnection architectures with advantages over swapped or OTIS networks
Abstract:We propose a new family of communication architectures called ‘biswapped networks’. Given any n-node basis network Ω, the associated biswapped network Bsw(Ω) is built of 2n copies of Ω, using a simple rule for connectivity that ensures desirable attributes, including regularity, modularity, fault tolerance, and algorithmic efficiency. In particular, if Ω is a Cayley digraph, then so is Bsw(Ω). Our biswapped connectivity provides a systematic scheme for synthesizing large, scalable, modular, and robust parallel architectures. Furthermore, many desirable attributes of the underlying basis network Ω are preserved, as the Bsw(Ω) parameters are related to the corresponding parameters of Ω. We obtain a number of results on internode distances, Hamiltonian cycles, optimal routing, and node-disjoint paths for Bsw(Ω). We explore the relations between biswapped and swapped or optical transpose interconnection system (OTIS) networks, which may use a mix of electronic and optical links. In particular, we demonstrate that the biswapped connectivity removes an inherent asymmetry of swapped/OTIS networks, as well as the attendant complications in analyses and applications. Finally, we show that biswapped networks are complementary to, and offer advantages over, well-known and widely used interconnection architectures for parallel processing.
Keywords:bipartite graph  Cayley graph/digraph  fault tolerance  Hamiltonian cycle  hierarchical network  interconnection network  internode distance  network diameter  node-disjoint paths  OTIS network  shortest-path routing  swapped network
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号