首页 | 本学科首页   官方微博 | 高级检索  
     


A fully discrete local discontinuous Galerkin method for one-dimensional time-fractional Fisher's equation
Abstract:In this paper, we consider the local discontinuous Galerkin (LDG) finite element method for one-dimensional time-fractional Fisher's equation, which is obtained from the standard one-dimensional Fisher's equation by replacing the first-order time derivative with a fractional derivative (of order α, with 0<α<1). The proposed LDG is based on the LDG finite element method for space and finite difference method for time. We prove that the method is stable, and the numerical solution converges to the exact one with order O(hk+12?α), where h, τ and k are the space step size, time step size, polynomial degree, respectively. The numerical experiments reveal that the LDG is very effective.
Keywords:time-fractional Fisher's equation  local discontinuous Galerkin finite element method  Caputo fractional derivative  fractional differential equation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号