首页 | 本学科首页   官方微博 | 高级检索  
     


High-accuracy finite-difference methods for the valuation of options
Abstract:A finite-difference scheme often employed for the valuation of options from the Black–Scholes equation is the Crank–Nicolson (CN) scheme. The CN scheme is second order in both time and asset. For a rapid valuation with a reasonable resolution of the option price curve, it requires extremely small steps in both time and asset. In this paper, we present high-accuracy finite-difference methods for the Black–Scholes equation in which we employ the fourth-order L-stable Simpson-type (LSIMP) time integration schemes developed earlier and the well-known Numerov method for discretization in the asset direction. The resulting schemes, called LSIMP–NUM, are fourth order in both time and asset. The LSIMP–NUM schemes obtained can provide a rapid, stable and accurate resolution of option prices, allowing for relatively large steps in both time and asset. We compare the computational efficiency of the LSIMP–NUM schemes with the CN and Douglas schemes by considering valuation of European options and American options via the linear complementarity approach.
Keywords:Valuation of options  Black–Scholes equation  Crank–Nicolson method  Douglas method  L-stable Simpson-type rules  Numerov method  High-accuracy finite-difference methods  European options  American options  Linear complementarity approach
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号