Abstract: | Let G be a simple non-complete graph of order n. The r-component edge connectivity of G denoted as λr (G) is the minimum number of edges that must be removed from G in order to obtain a graph with (at least) r connected components. The concept of r-component edge connectivity generalizes that of edge connectivity by taking into account the number of components of the resulting graph. In this paper we establish bounds of the r component edge connectivity of an important family of interconnection network models, the generalized Petersen graphs GP(n, k) in which n and k are relatively prime integers. |