首页 | 本学科首页   官方微博 | 高级检索  
     


Engineering a metal binding site within a polytopic membrane protein, the lactose permease of Escherichia coli
Authors:K Jung  J Voss  M He  WL Hubbell  HR Kaback
Affiliation:Howard Hughes Medical Institute, Department of Physiology, University of California, Los Angeles 90095-1662, USA.
Abstract:Site-directed excimer fluorescence indicates that Glu269 (helix VIII) and His322 (helix X) in the lactose permease of Escherichia coli lie in close proximity [Jung, K., Jung, H., Wu, J., Privé, G.G., & Kaback, H.R. (1993) Biochemistry 32, 12273]. In this study, Glu269 was replaced with His in wild-type permease, leading to the presence of bis-His residues between helices VIII and X. Wild-type and Glu269-->His permease containing a biotin acceptor domain were purified by monomeric avidin affinity chromatography, and binding of Mn2+ was studied by electron paramagnetic resonance (EPR) spectroscopy. The amplitude of the Mn2+ EPR spectrum is reduced by the Glu269-->His mutant, while no change is observed in the presence of wild-type permease. The Glu269-->His mutant contains a single binding site for Mn2+ with a KD of about 43 microM, and Mn2+ binding is pH dependent with no binding at pH 5.0, stoichiometric binding at pH 7.5, and a midpoint at about pH 6.3. The results confirm the conclusion that helices VIII and X are closely opposed in the tertiary structure of lac permease and provide a novel approach for studying helix proximity, as well as solvent accessibility, in polytopic membrane proteins.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号