首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于竞选领导策略的改进粒子群算法
引用本文:李童,毛力,吴滨,杨弘,肖炜. 一种基于竞选领导策略的改进粒子群算法[J]. 计算机工程与应用, 2014, 50(20): 36-40
作者姓名:李童  毛力  吴滨  杨弘  肖炜
作者单位:1.江南大学 物联网工程学院 轻工过程先进控制教育部重点实验室,江苏 无锡 2141222.中国水产科学研究院 淡水渔业研究中心,江苏 无锡 214081
基金项目:轻工过程先进控制教育部重点实验室开放课题资助(江南大学)项目(No.APCLI1004);国家青年科学基金项目资助(No.F030204);现代农业产业技术体系专项资金资助(No.CARS-49);江苏高校人文社会科学校外研究基地中国物联网发展战略研究基地资助。
摘    要:针对标准粒子群算法由于粒子多样性的大量丧失而导致的算法易陷入局部最优解,收敛精度不高的问题,提出一种基于竞选领导策略的改进粒子群算法,该算法在全局最优粒子的领导能力丧失时,通过引进细菌觅食算法的趋化算子对精英粒子进行优化,然后选出更具领导能力的粒子作为新的领导粒子来带领种群跳出局部最优解,以增强算法的全局搜索能力。通过四个典型函数的测试,结果表明改进算法在较好保留了标准粒子群算法快速收敛优点的前提下,有效地预防了早熟现象的产生,提高了收敛精度。

关 键 词:粒子群优化算法  竞选领导  细菌觅食算法  Metropolis准则  

Improved particle swarm optimization based on campaign leader strategy
LI Tong,MAO Li,WU Bin,YANG Hong,XIAO Wei. Improved particle swarm optimization based on campaign leader strategy[J]. Computer Engineering and Applications, 2014, 50(20): 36-40
Authors:LI Tong  MAO Li  WU Bin  YANG Hong  XIAO Wei
Affiliation:1.Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things, Jiangnan University, Wuxi, Jiangsu 214122, China2.Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi, Jiangsu 214081, China
Abstract:For the question that standard particle swarm optimization algorithm is easy to fall into local optimal solution, poor in global search ability because of the lost of diversity of particles. This article introduces a new particle swarm optimization algorithm based on campaign leader strategy. It starts the campaign mechanism when the leadership of the global optimal particle loses. It selects a new leader which has more leadership skills to enhance the global search ability of the algorithm after optimizing the elite particles with bacterial foraging algorithm chemotaxis operator. Experimental studies are carried out on four classical functions, and the computational results show?that the algorithm prevents the premature phenomenon effectively and improves the convergence precision without affecting the convergence speed.
Keywords:particle swarm optimization  campaign leader  bacterial foraging algorithm  Metropolis criterion
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号