首页 | 本学科首页   官方微博 | 高级检索  
     

遗传神经网络对水平通道流动沸腾传热系数的预测
引用本文:章静,丛腾龙,苏光辉,秋穗正.遗传神经网络对水平通道流动沸腾传热系数的预测[J].原子能科学技术,2015,49(1):70-76.
作者姓名:章静  丛腾龙  苏光辉  秋穗正
作者单位:1.西安交通大学 动力工程多相流国家重点实验室,陕西 西安710049;2.西安交通大学 核科学与技术学院,陕西 西安710049
基金项目:国家杰出青年科学基金资助项目
摘    要:分别采用3层反向传播神经网络(BPN)和遗传神经网络(GNN)预测从常规通道到微通道尺度范围内的管内流动沸腾传热系数,GNN的精度优于BPN的精度(均方根误差分别为17.16%和20.50%)。输入参数为含气率、质量流密度、热流密度、管径和物性,输出参数为传热系数。基于GNN预测结果,进行了参数趋势分析。对常规通道,传热系数随压力的增大而增大;对微通道,低压时传热系数受压力影响很小,高压、低含气率时,传热系数随压力的增大而增大,高压、高含气率时,传热系数随压力的增大而减小。传热系数随质量流密度、热流密度的增大而增大。随含气率的增大,传热系数先增大后减小;微通道发生烧干时的含气率较低。传热系数随管径的减小而增大;管径越小,越易发生烧干。

关 键 词:BP神经网络    遗传神经网络    流动沸腾传热系数

Prediction of Flow Boiling Heat Transfer Coefficient in Horizontal Channel by Genetic Neural Network
ZHANG Jing,CONG Teng-long,SU Guang-hui,QIU Sui-zheng.Prediction of Flow Boiling Heat Transfer Coefficient in Horizontal Channel by Genetic Neural Network[J].Atomic Energy Science and Technology,2015,49(1):70-76.
Authors:ZHANG Jing  CONG Teng-long  SU Guang-hui  QIU Sui-zheng
Affiliation:1.State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China;2.School of Nuclear Science and Technology,  Xi’an Jiaotong University, Xi’an 710049, China
Abstract:The three-layer back propagation network (BPN) and genetic neural network (GNN) were developed to predict the flow boiling heat transfer coefficient (HTC) in conventional and micro channels. The precision of GNN is higher than that of BPN (with root mean square errors of 17.16% and 20.50%, respectively). The inputs include vapor quality, mass flux, heat flux, diameter and physical properties and the output is HTC. Based on the trained GNN, the influences of input parameters on HTC were analyzed. HTC increases with pressure in conventional channels. The pressure has a negligible effect at low pressure region on HTC for micro channels. However, at high pressure region, HTC increases in low vapor quality region, while decreases in the high vapor quality region with the increase of pressure. HTC increases with the mass flux and heat flux, and HTC initially increases and then decreases as vapor quality increases. HTC increases inversely with the decrease of diameter. Dry-out arises at a lower quality in micro channels than that in conventional channels and more easily occurs in a smaller channel.
Keywords:back propagation network  genetic neural network  flow boiling heat trans-fer coefficient
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《原子能科学技术》浏览原始摘要信息
点击此处可从《原子能科学技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号