首页 | 本学科首页   官方微博 | 高级检索  
     


Friction and Wear Performance of Boron Doped,Undoped Microcrystalline and Fine Grained Composite Diamond Films
Authors:WANG Xinchang  WANG Liang  SHEN Bin  SUN Fanghong
Affiliation:School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract:Chemical vapor deposition(CVD) diamond films have attracted more attentions due to their excellent mechanical properties. Whereas as-fabricated traditional diamond films in the previous studies don't have enough adhesion or surface smoothness, which seriously impact their friction and wear performance, and thus limit their applications under extremely harsh conditions. A boron doped, undoped microcrystalline and fine grained composite diamond(BD-UM-FGCD) film is fabricated by a three-step method adopting hot filament CVD(HFCVD) method in the present study, presenting outstanding comprehensive performance, including the good adhesion between the substrate and the underlying boron doped diamond(BDD) layer, the extremely high hardness of the middle undoped microcrystalline diamond(UMCD) layer, as well as the low surface roughness and favorable polished convenience of the surface fine grained diamond(FGD) layer. The friction and wear behavior of this composite film sliding against low-carbon steel and silicon nitride balls are studied on a ball-on-plate rotational friction tester. Besides, its wear rate is further evaluated under a severer condition using an inner-hole polishing apparatus, with low-carbon steel wire as the counterpart. The test results show that the BD-UM-FGCD film performs very small friction coefficient and great friction behavior owing to its high surface smoothness, and meanwhile it also has excellent wear resistance because of the relatively high hardness of the surface FGD film and the extremely high hardness of the middle UMCD film. Moreover, under the industrial conditions for producing low-carbon steel wires, this composite film can sufficiently prolong the working lifetime of the drawing dies and improve their application effects. This research develops a novel composite diamond films owning great comprehensive properties, which have great potentials as protecting coatings on working surfaces of the wear-resistant and anti-frictional components.
Keywords:BD-UM-FGCD film  HFCVD  friction behavior  wear performance  application
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号