首页 | 本学科首页   官方微博 | 高级检索  
     


2D and 3D mapping of microindentations in hydrated and dehydrated cortical bones using confocal laser scanning microscopy
Authors:Ling Yin  Sudharshan Venkatesan  Daryl Webb  Shankar Kalyanasundaram  Qing-Hua Qin
Affiliation:1. School of Engineering & Physical Sciences, James Cook University, Townsville, QLD, 4811, Australia
2. School of Engineering, Australian National University, Canberra, ACT, 0200, Australia
3. Electron Microscopy Unit, Australian National University, Canberra, ACT, 0200, Australia
Abstract:We report on responses of hydrated and dehydrated cortical bone tissues to mechanical loading applied by a Vickers indenter. The Vickers indentations were imaged in two- and three-dimensions (2D and 3D) using confocal laser scanning microscopy (CLSM) to understand mechanical behavior of bone tissues. Serial optical sections of indentation patterns of dry and wet bones were collected using CLSM. The indention surface structures were mapped using topographical CLSM imaging. The observation of CLSM shows the fundamental indentation responses for both the hydrated and dehydrated bone tissues were plastic deformation. No visible fracture was observed in the Vickers indentation patterns in the wet bone tissue, while non-propagating lamellar microcracks occurred in the dry bone tissue. This indicates that drying resulted in increased brittleness of the bone tissue. The Vickers hardness values of dry bone tissue were significantly higher than those of wet bone tissue at any applied loads (analysis of variation, ANOVA, p < 0.05). The resolution limits of confocal microscopy were also discussed for bone tissue scanning.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号