首页 | 本学科首页   官方微博 | 高级检索  
     


Input–output invertibility and sliding mode control for close formation flying of multiple UAVs
Authors:Sahjendra N. Singh  Meir Pachter  Phil Chandler  Siva Banda  Steve Rasmussen  Corey Schumacher
Abstract:This paper treats the question of invertibility of input–output maps and the design of a robust control system for formation flying of multiple unmanned aerial vehicles (UAVs). In close formation, the wing UAV motion is affected by the vortex of the adjacent lead aircraft. The forces produced by these vortices are complex functions of relative position coordinates of the UAVs. In this paper, these forces are treated as unknown functions. For trajectory tracking, invertibility of certain input–output maps in the wind axes system are examined. Interestingly, in the wind axes system, the system is not invertible, but in a simplified co‐ordinate system obtained from the wind axes system for which the velocity roll is zero, inverse control of separation co‐ordinates is possible. Variable structure control laws are derived for separation trajectory control of wing aircraft in the simplified wind co‐ordinate system and for the flight control of the lead aircraft. Simulation results for two UAVs are presented which show precise separation trajectory control in spite of the presence of unknown vortex forces, while the lead aircraft maneuvers. Furthermore, these results confirm that when the wing aircraft is positioned properly in the vortex of the lead aircraft, there is a reduction in the required flight power. Published in 2000 by John Wiley & Sons, Ltd.
Keywords:formation control  control of UAVs  inverse control  variable structure control  nonlinear system  feedback linearization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号