首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of anisotropy,porosity and initial stresses on crack propagation due to Love‐type wave in a poroelastic medium
Authors:A K Singh  R P Yadav  K C Mistri  A Chattopadhyay
Affiliation:Department of Applied Mathematics, Indian School of Mines, Dhanbad, Jharkhand, India
Abstract:An analytical solution has been attained to establish the closed form expression of stress intensity factor at the tip of a semi‐infinite crack, dynamically propagating in an initially stressed transversely isotropic poroelastic strip due to Love‐type wave for the case of concentrated force of constant intensity as well as for the case of constant load. The study presents the sound effect of various affecting parameters viz. speed of the crack, length of the crack, horizontal compressive/tensile initial stress, vertical compressive/tensile initial stress, porosity parameter and anisotropy parameter on the stress intensity factor. In order to delineate the effects of these aforementioned parameters on the stress intensity factor graphically, numerical simulations have been accomplished. One of the major highlight of the paper is the comparative study carried out for horizontal compressive/tensile initial stress, vertical compressive/tensile initial stress, porosity parameter and anisotropy parameter with the case when the strip is isotropic, non‐porous and free from initial stresses. Wiener–Hopf technique and the Fourier integral transform has been effectuated for the procurement of the closed form expression (exact solution) of stress intensity factor.
Keywords:crack  initial stress  Love‐type wave  poroelastic  stress intensity factor
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号