首页 | 本学科首页   官方微博 | 高级检索  
     

TendiffPure:一种用于纯化的卷积张量链去噪扩散模型(英文)
作者姓名:白名瑗  周德润  赵启斌
作者单位:1. 理化学研究所革新知能统合研究项目组;2. 东京工业大学環境社会理工学院
摘    要:扩散模型是有效的纯化方法,在现有分类器执行分类任务之前,使用生成方法去除噪声或对抗性攻击。然而,扩散模型的效率仍然是一个问题,现有的解决方案基于知识蒸馏,由于生成步骤较少,可能会危及生成质量。因此,我们提出TendiffPure,一种用于纯化的张量化和压缩的扩散模型。与知识蒸馏方法不同,我们直接使用张量链分解压缩扩散模型的U-Net骨干网络,减少参数数量,并在多维数据(如图像)中捕获更多的空间信息。空间复杂度从O(N2)减少到O(NR2),其中R≤4为张量序列秩,N为通道数。实验结果表明,基于CIFAR-10、Fashion-MNIST和MNIST数据集,TendiffPure可以更有效地生成高质量的净化结果,并在两种噪声和一次对抗性攻击下优于基线纯化方法。

关 键 词:扩散模型  张量分解  图像去噪
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号