首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的火焰状态识别方法
引用本文:白卫东,严建华,马增益,王飞,张清宇,林彬,倪明江,岑可法. 基于支持向量机的火焰状态识别方法[J]. 动力工程, 2004, 24(4): 548-551
作者姓名:白卫东  严建华  马增益  王飞  张清宇  林彬  倪明江  岑可法
作者单位:浙江大学,热能工程研究所,清洁能源与环境工程教育部重点实验室,杭州,310027
基金项目:国家自然科学基金资助项目(50106015)
摘    要:电站锅炉燃烧稳定性的定量判别一直是一个难题。作者首先对火焰图像进行特征提取,提取出火焰亮度、火焰高温亮度、火焰面积、火焰高温面积、火焰高温面积率、质心偏移距离和圆形度等7个特征量。然后分别对这个特征空间和原始图像数据使用支持向量机对其进行识别分类,结果表明:两种数据结果相同.能够正确识别燃烧火焰状态.证明特征量的提取是成功的;支持向量机方法用于燃烧火焰的分类识别是可行的。图4表1参8

关 键 词:热工学 锅炉 燃烧诊断 支持向量机 火焰图像 模式识别
文章编号:1000-6761(2004)04-0548-04

Method of Flame Identification Based on Support Vector Machine
BAI Wei-dong,YAN Jian-hua,MA Zeng-yi,WANGFei,ZHANG Qing-yu,LINBin,NI Ming-jiang,CEN Ke-fa. Method of Flame Identification Based on Support Vector Machine[J]. Power Engineering, 2004, 24(4): 548-551
Authors:BAI Wei-dong  YAN Jian-hua  MA Zeng-yi  WANGFei  ZHANG Qing-yu  LINBin  NI Ming-jiang  CEN Ke-fa
Abstract:The quantitative judgement of combustion stability of utility boiler has been difficult.In this paper, first, the seven features of the flame image are extracted, which were brightness of the flame, brightness of the high temperature flame, area of flame, area of the high temperature flame, rate of area of the high temperature flame, centroidal offset and circularity etc. Then the feature space consisting of seven features and original image data respectively are classified with Support Vector Machine. These two methods drew the same conclusion, and they both can correctly recognise the state of the combustion flame. Further analysis suggested that the feature extract is success and Support Vector Machine is effective for classification of the combustion flame .Figs 4, table 1 and refs 8.
Keywords:thermodynamics  boiler  combustion diagnosis  support vector machine  flame image  pattern identification
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号