首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进BP网络的磨料水射流切割质量研究
引用本文:岑海堂,迟露鑫,杨阳,高玉龙. 基于改进BP网络的磨料水射流切割质量研究[J]. 机械设计与制造, 2009, 0(9)
作者姓名:岑海堂  迟露鑫  杨阳  高玉龙
作者单位:1. 内蒙古工业大学,呼和浩特,010062
2. 北方重工集团公司,包头,014030
基金项目:内蒙古自然科学基金资助项目 
摘    要:目前建立的磨料水射流切割质量数学模型,对厚板材切割时,其加工精度和表面质量较难控制.基于BP神经网络学习理论,通过对网络权值和阀值进行四种方法的改进,目的是改善网络误差反向学习性能,建立低误差收敛精度、快训练速度的最佳切割质量模型.在获取大量样本数据的基础上,对最佳改进BP网络模型进行训练、预测,结果表明该模型能够快速、准确、可靠地预测磨料水射流切割质量.

关 键 词:磨料水射流  改进BP模型  质量预测

The model analysis of abrasive water jet cutting quality by the improving BP neural network
CEN Hai-tang,CHI Lu-xin,YANG Yang,GAO Yu-long. The model analysis of abrasive water jet cutting quality by the improving BP neural network[J]. Machinery Design & Manufacture, 2009, 0(9)
Authors:CEN Hai-tang  CHI Lu-xin  YANG Yang  GAO Yu-long
Affiliation:1Inner Mongolia University of Technology;Huhhot 010062;China;2North Heavy Industries Group Corp.ltd;Baotou 014030;China
Abstract:The rapid development of computer technology,some mathematical model of abrasive water jet which was established has still not compared to neural network,the precision machining and surface quality is difficult to control. By the BP neural network system,the four contrastive improvements methods are adopted to amend the weights and bias of BP network,at last,to determine the best model,in which the lower error convergence precision and faster speed training is selected. Based on a large number of sample dat...
Keywords:Abrasive water jet  The model of BP neural network  Prediction of surface quality  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号