摘 要: | 针对已有算法中特征表示存在的稀疏问题以及文本高层特征提取效果不佳问题,提出了一种基于混合神经网络的中文短文本分类模型。该模型首先通过自定义筛选机制将文档以短语层和字符层进行特征词筛选;然后将卷积神经网络(CNN)和循环神经网络(RNN)相结合,提取文本高阶特征,并引入注意力机制优化高阶向量特征;最后将得到的高阶向量特征输入到全连接层得到分类结果。实验结果表明:该方法能有效提取出文档的短语层和字符层特征;与传统CNN、传统LSTM和CLSTM模型对比,二分类数据集上准确率分别提高10.36%、5.01%和2.39%,多分类数据集上准确率分别提高12.33%、4.16%和2.33%。
|