首页 | 本学科首页   官方微博 | 高级检索  
     


Nanocapillary array interconnects for gated analyte injections and electrophoretic separations in multilayer microfluidic architectures
Authors:Cannon Donald M  Kuo Tzu-Chi  Bohn Paul W  Sweedler Jonathan V
Affiliation:Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.
Abstract:An electrokinetic injection technique is described which uses a nuclear track-etched nanocapillary array to inject sample plugs from one layer of a microfluidic device into another vertically separated layer for electrophoretic separations. Gated injection protocols for analyte separations, reported here, establish nanocapillary array interconnects as a route to multilevel microfluidic analytical designs. The hybrid nanofluidic/microfluidic gated injection protocol allows sample preparation and separation to be implemented in separate horizontal planes, thereby achieving multilayer integration. Repeated injections and separations of FITC-labeled arginine and tryptophan, using 200-nm pore-diameter capillary array injectors in place of traditional cross injectors are used to demonstrate gated injection with a bias configuration that uses relay switching of a single high-voltage source. Injection times as rapid as 0.3 s along with separation reproducibilities as low as 1% for FITC-labeled arginine exemplify the capability for fast, serial separations and analyses. Impedance analysis of the micro-/nanofluidic network is used to gain further insight into the mechanism by which this actively controlled nanofluidic-interconnect injection method works. Gated sample introduction via a nanocapillary array interconnect allows the injection and separation protocols to be optimized independently, thus realizing the versatility needed for real-world implementation of rapid, serial microchip analyses.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号