首页 | 本学科首页   官方微博 | 高级检索  
     

应用聚类和分形实现复杂背景下的扩展目标分割
引用本文:张坤华,杨烜. 应用聚类和分形实现复杂背景下的扩展目标分割[J]. 光学精密工程, 2009, 17(7)
作者姓名:张坤华  杨烜
作者单位:深圳大学,信息工程学院,广东,深圳,518060;深圳大学,信息工程学院,广东,深圳,518060
基金项目:国家自然科学基金,深圳大学科研启动基金,国家重点实验室资助项目,深圳市科技计划项目 
摘    要:将K-均值聚类方法与分形理论相结合,提出了一种分两个阶段对扩展目标进行分割的方法.在预分割阶段,运用粗糙集理论求取初始聚类中心,在K-均值聚类分割和区域连通的基础上,检测图像边缘并进行边界跟踪,对于获得的目标和背景团块根据扩展目标特性确定目标潜在区域.在进一步分割阶段,给出图像分维数随尺度变化的函数,利用自适应阈值,根据分形理论的尺度不变性进一步抑制预分割结果中的自然背景,并运用形态学开运算消除背景粘连.实验表明该方法能有效并可靠地实现复杂背景下扩展目标的精确分割,分割出的扩展目标轮廓细节保持良好.

关 键 词:图像分割  扩展目标  K-均值聚类  分形  粗糙集

Segmentation for extended target in complex backgrounds based on clustering and fractal
ZHANG Kun-hua,YANG Xuan. Segmentation for extended target in complex backgrounds based on clustering and fractal[J]. Optics and Precision Engineering, 2009, 17(7)
Authors:ZHANG Kun-hua  YANG Xuan
Affiliation:ZHANG Kun-hua,YANG Xuan(College of Information Engineering,Shenzhen University,Shenzhen 518060,China)
Abstract:A new segmentation algorithm which was divided into two steps was proposed for an extended target in complex backgrounds by utilizing the K-means clustering and fractal theory.Firstly,the K-means clustering algorithm was improved by using the rough set theory to determine initial cluster centroids.On the basis of K-means clustering segmentation and region connection,the edges of the target and backgrounds were extracted accurately and intactly.After boundary tracking,the potential target regions were detect...
Keywords:image segmentation  extended target  K-means clustering  fractal  rough set
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号