首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应神经模糊推理系统的刀具磨损监测
引用本文:朱永猛,吴军,吴超勇,苏永衡. 基于自适应神经模糊推理系统的刀具磨损监测[J]. 四川兵工学报, 2016, 0(9). DOI: 10.11809/scbgxb2016.09.027
作者姓名:朱永猛  吴军  吴超勇  苏永衡
作者单位:华中科技大学 船舶与海洋工程学院,武汉,430074
基金项目:国家自然科学基金面上项目(51475189);中央高校基本科研业务费专项资金资助(2016YXMS050)
摘    要:为精确地监测高速铣床刀具在加工过程中的刀具磨损量,通过采集高速铣床加工过程中的振动信号、电流信号和噪声信号,经数据预处理与数据融合,建立基于自适应神经模糊推理系统的刀具磨损过程变化模型,实现在高速铣床不停机的前提下对铣床刀具进行状态监控。实验结果显示:针对铣床刀具磨损量的监测平均准确率为95.21%,最大监测准确率为99.74%。这表明文中所采用的方法具有较高的可行性。

关 键 词:铣床  刀具磨损监测  ANFIS

Research on Method of Tool Wear Monitoring Based on ANFIS
Abstract:In order to monitor the tool wear of a milling machine accurately,the signals of table and spindle vibration,the signals of spindle AC and DC current,and the signals of table and spindle acoustic emission were collected to establish a model of the tool wear process variations basing on ANFIS.At last, the established model will be used to monitor the milling machine tool wear without the machine stop running.According to the output of the model,the average monitoring accuracy is 95.21%,and the highest monitoring accuracy is up to 99.74%,which means the method of the paper proposed has a high feasibility.
Keywords:milling machine  tool wear monitoring  ANFIS
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号