首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于Akaike信息准则的极限学习机
引用本文:尹建川,邹早建,徐锋. 一种基于Akaike信息准则的极限学习机[J]. 山东大学学报(工学版), 2011, 41(6): 7-11
作者姓名:尹建川  邹早建  徐锋
作者单位:1. 上海交通大学船舶海洋与建筑工程学院, 上海 200240; 2. 大连海事大学航海学院, 辽宁 大连 116026;3.上海交通大学海洋工程国家重点实验室, 上海 200240
基金项目:国家自然科学基金资助项目(51061130548;50979060)
摘    要:为了减小传统的极限学习机网络的规模及提高网络的泛化性能,利用Akaike信息准则作为学习的最优停止准则以选择合适的隐层节点数量,同时利用修正Gram Schmidt算法自动调整网络参数,提出改进的极限学习机网络构造算法。通过与传统极限学习机在通用标杆问题上的实验结果比较表明, 该改进的极限学习机具有更精简的网络结构和更快的学习速度,同时具有良好的学习精度。

关 键 词:极限学习机  Akaike信息准则  修正Gram-Schmidt算法  前向神经网络  
收稿时间:2011-04-08

An improved extreme learning machine based on Akaike criterion
YIN Jian-chuan,,ZOU Zao-jian,,XU Feng. An improved extreme learning machine based on Akaike criterion[J]. Journal of Shandong University of Technology, 2011, 41(6): 7-11
Authors:YIN Jian-chuan    ZOU Zao-jian    XU Feng
Affiliation:1. School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China;2. Navigation College, Dalian Maritime University, Dalian 116026, China;3. State Key Laboratory of Ocean Engineering, Shanghai Jiaotong University, Shanghai 200240, China
Abstract:To reduce the dimension of a neural network and improve the generalization capability of the extreme learning machine(ELM) network,Akaike information criterion(AIC) was implemented to choose a suitable number of hidden units,and the modified Gram-Schmidt(MGS) method was also implemented to automatically adjust the network parameters.In comparison with the conventional ELM learning method on several commonly used regressor benchmark problems,the improved ELM algorithm could achieve a compact network with muc...
Keywords:extreme learning machine  Akaike information criterion  modified Gram-Schmidt algorithm  feedforward neural network  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《山东大学学报(工学版)》浏览原始摘要信息
点击此处可从《山东大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号