首页 | 本学科首页   官方微博 | 高级检索  
     


Finite-Difference Time-Domain Algorithm for Quantifying Light Absorption in Silicon Nanowires
Authors:Ho-Seok Ee  Kyung-Deok Song  Sun-Kyung Kim  Hong-Gyu Park
Affiliation:Department of Physics, Korea University, Seoul 136-701, Republic of Korea
Abstract:We introduce an accurate and fast finite-difference time-domain (FDTD) method for calculating light absorption in nanoscale optical systems. The dispersive FDTD update equations were derived from auxiliary differential equations (ADE), wherein dispersive media were fitted by various dispersion models including the Drude, Debye, Lorentz, and critical point models. Light absorption in the dispersive media was quantified by calculating polarization pole currents in the ADE. To verify this simulation method, the absorption spectrum of a 300 nm thick silicon film was calculated and compared to an analytic solution. In addition, the absorption cross-section of a single silicon nanowire with a diameter of 300 nm was calculated using monochromatic and broadband light sources. We believe that this reformatted FDTD method is a powerful tool for the design of novel nanophotonic components, including nanowire photovoltaic devices.
Keywords:absorption cross-section  finite-difference time-domain  light absorption  nanowire  photovoltaic
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号