首页 | 本学科首页   官方微博 | 高级检索  
     


Transglutaminase Catalysis of Modified Whey Protein Dispersions
Authors:Debra A. Clare  Christopher R. Daubert
Affiliation:Authors are with Dept. of Food, Bioprocessing and Nutrition Sciences, North Carolina State Univ., Raleigh, NC 27695-7624, U.S.A. Direct inquiries to author Clare (E-mail: debra_clare@ncsu.edu).
Abstract:ABSTRACT: Transglutaminase (TGase) cross-linking reactions were accomplished using a heat-modified whey protein concentrate (mWPC) substrate after pH adjustment to 8. Based on earlier reports, the degree of lactosylation with respect to β-lactoglobulin was lower in mWPC dispersions than measured in commercial whey concentrate (cWPC) protein solutions. In this study, a higher concentration of free sulfhydryl groups was detected in soluble supernatant fractions. Both factors potentially impact the availability of reactive lysine/glutaminyl residues required for TGase reactivity. The addition of 10 mM dithiothreitol (DTT) to the substrate mix, CBZ-glutaminyl glycine and hydroxylamine, revealed a 3.6-fold increase in TGase activity, likely due in part to maintenance of the catalytic cysteine residue in a reduced state. Furthermore, inclusion of DTT to mWPC dispersions significantly raised the apparent viscosity, independently of enzyme modification, while the rate of polymerization increased 2-fold based on OPA assay measurements. Limited cross-linking slightly increased the apparent viscosity, whereas extensive coupling lowered these values compared to equivalent nonenzyme-treated mWPC samples. Carbohydrate-staining revealed formation of glyco-polymers due to covalent linkages between glucosamine and mWPC proteins after TGase processing. Again, the apparent viscosity decreased after extensive enzymatic modification. Larger particles, sized 11.28 μm, were observed in the structural matrix of TGase-mWPC-fixed samples compared to 8 μm particles in control mWPC samples as viewed in scanning electron micrographs. Ultimately, the functional characteristics of TGase-mWPC ingredients may be custom-designed to deliver alternative functional attributes by adjusting the experimental reaction conditions under which catalysis is achieved. Practical Application: Taken together, these results suggest that unique TGase-mWPC and/or TGase-mWPC-glucosamine ingredients may be designed to provide novel, value-added, polymeric/glyco-polymeric protein products that afford added benefit for the milk industry.
Keywords:enzyme modification  functionality  glycoprotein formation  rheology-apparent viscosity  transglutaminase  whey protein
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号