首页 | 本学科首页   官方微博 | 高级检索  
     

基于Xception网络的弱监督细粒度图像分类
引用本文:丁文谦,余鹏飞,李海燕,陆鑫伟. 基于Xception网络的弱监督细粒度图像分类[J]. 计算机工程与应用, 2022, 58(2): 235-243. DOI: 10.3778/j.issn.1002-8331.2008-0402
作者姓名:丁文谦  余鹏飞  李海燕  陆鑫伟
作者单位:云南大学 信息学院,昆明 650500
基金项目:国家自然科学基金(62066046)。
摘    要:随着深度学习的快速发展,计算机视觉领域对图像的分类研究不仅仅局限于识别出物体的类别,更需要在传统图像分类任务的基础上进行更细致的类别划分.通过对现有细粒度图像分类算法和模型的分析研究,提出一种基于Xception模型与WSDAN(weakly supervised data augmentation network)弱...

关 键 词:细粒度图像分类  数据增强  深度学习  弱监督  Xception网络

Weakly Supervised Fine-Grained Image Classification Based on Xception Network
DING Wenqian,YU Pengfei,LI Haiyan,LU Xinwei. Weakly Supervised Fine-Grained Image Classification Based on Xception Network[J]. Computer Engineering and Applications, 2022, 58(2): 235-243. DOI: 10.3778/j.issn.1002-8331.2008-0402
Authors:DING Wenqian  YU Pengfei  LI Haiyan  LU Xinwei
Affiliation:School of Information Science and Engineering, Yunnan University, Kunming 650500, China
Abstract:With the rapid development of deep learning, the classification of images research in the field of computer vision is not only limited to recognizing the categories of objects, but also needs more detailed classification based on the traditional image classification task. Based on the existing fine-grained image classification algorithm and model analysis, a model based on Xception model and WSDAN(weakly supervised data augmentation network) weak supervision data augment method of combination of deep learning network is applied to fine-grained image classification task. The method takes Xception network as the backbone network and feature extraction network, uses the improved WSDAN model for data augment, and feeds the augmented image back to the network as the input image to enhance the generalization ability of the network. Experiments on the commonly used fine-grained image data sets and NABirds data set show that the classification accuracy rate is 89.28%, 91.18%, 94.47%, 93.04% and 88.4%, respectively. The experimental results show that this method achieves better classification results compared with WSDAN(Pytorch) model and other mainstream fine-grained classification algorithms.
Keywords:fine-grained image classification  data augment  deep learning  weak supervision  Xception network
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号