首页 | 本学科首页   官方微博 | 高级检索  
     

改进的M2det内窥镜息肉检测方法
引用本文:王博,张丽媛,师为礼,杨华民,蒋振刚. 改进的M2det内窥镜息肉检测方法[J]. 计算机工程与应用, 2022, 58(2): 193-200. DOI: 10.3778/j.issn.1002-8331.2008-0084
作者姓名:王博  张丽媛  师为礼  杨华民  蒋振刚
作者单位:长春理工大学 计算机科学技术学院,长春 130022
基金项目:国家重点研发计划项目(2017YFC0108303);吉林省科技发展计划项目(20180201037SF,20190201196JC,20190302112GX,20200404142YY,20200403127SF,20200401078GX)。
摘    要:结直肠癌是一种致命的疾病,作为息肉的肠腺瘤被认为是结直肠癌的主要病因,因此在临床诊断中发现肠息肉是一项至关重要的任务.息肉检测通常由医生操作内窥镜来实现,由于肠道环境复杂,息肉影像数据量大,小尺度息肉不易辨识,息肉检查过程除了极其依赖医生经验之外,工作压力和强度也给医生带来了极大的负担,因此需要借助计算机辅助诊断技术来...

关 键 词:息肉检测  计算机辅助诊断  M2det  特征融合模块(FFMs)  空间和通道上的压缩激励网络(scSENet)  Focal loss

Improved M2det Endoscopic Polyp Detection Method
WANG Bo,ZHANG Liyuan,SHI Weili,YANG Huamin,JIANG Zhengang. Improved M2det Endoscopic Polyp Detection Method[J]. Computer Engineering and Applications, 2022, 58(2): 193-200. DOI: 10.3778/j.issn.1002-8331.2008-0084
Authors:WANG Bo  ZHANG Liyuan  SHI Weili  YANG Huamin  JIANG Zhengang
Affiliation:College of Computer Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
Abstract:Colorectal cancer is a fatal disease. Intestinal adenoma, which is a polyp, is considered to be the main cause of colorectal cancer. Therefore, finding intestinal polyps in clinical diagnosis is a vital task. Polyp detection is usually achieved by doctors operating an endoscope. Due to the complex intestinal environment, the large amount of polyp imaging data, and the difficulty of identifying small-scale polyps, the polyp examination process is extremely dependent on the doctor’s experience, and the work pressure and intensity also bring the doctors. Therefore, it is necessary to use CAD to detect polyps. This technology can effectively process a large amount of polyp imaging data, find early polyps, and improve the accuracy of polyp detection. Some current methods fail to detect small polyps. Therefore, it proposes an improved M2det method for polyp detection. First, the FFMs module is used to fuse the backbone network features to make full use of the image features. Secondly, scSENet is added to the SFAM module. The attention mechanism retains effective features and suppresses useless features. Finally, Focal loss is used to calculate the classification loss, which solves the problem of imbalance between positive and negative samples. A large number of experiments show that this method can effectively detect polyps and is better than cutting-edge polyp detection methods. On the CVC15 data set, mAP, F1-score, and F2-score have been increased to 98.25%, 97.30%, and 97.98%, respectively.
Keywords:polyp detection  computer-aided diagnosis  M2det  feature fusion module(FFMs)  spatial and channel squeeze-and-excitation networks(scSENet)  Focal loss
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号