首页 | 本学科首页   官方微博 | 高级检索  
     

3DPCANet在阿尔茨海默症功能磁共振成像图像分类中的应用
引用本文:贾洪飞,刘茜,王瑜,肖洪兵,邢素霞. 3DPCANet在阿尔茨海默症功能磁共振成像图像分类中的应用[J]. 计算机应用, 2022, 42(1): 310-315. DOI: 10.11772/j.issn.1001-9081.2021010132
作者姓名:贾洪飞  刘茜  王瑜  肖洪兵  邢素霞
作者单位:北京工商大学 人工智能学院,北京 100048
基金项目:国家自然科学基金资助项目(61671028);北京市自然科学基金-北京市教育委员会科技计划重点项目(KZ202110011015)。
摘    要:阿尔茨海默症(AD)是一种起病隐匿的进行性神经退行性疾病,会使患者的大脑脑区结构发生改变.为辅助医生对AD患者的病情做出正确判断,提出了一种改进的三维主成分分析网络(3DPCANet)模型,并结合被试者全脑均值低频波动振幅(mALFF)图像来对AD进行分类.首先,对功能磁共振成像(fMRI)数据进行预处理,计算出全脑m...

关 键 词:阿尔茨海默症  功能磁共振成像  3DPCANet  支持向量机  均值低频波动振幅
收稿时间:2021-01-25
修稿时间:2020-05-31

Application of 3DPCANet in image classification of functional magnetic resonance imaging for Alzheimer's disease
JIA Hongfei,LIU Xi,WANG Yu,XIAO Hongbing,XING Suxia. Application of 3DPCANet in image classification of functional magnetic resonance imaging for Alzheimer's disease[J]. Journal of Computer Applications, 2022, 42(1): 310-315. DOI: 10.11772/j.issn.1001-9081.2021010132
Authors:JIA Hongfei  LIU Xi  WANG Yu  XIAO Hongbing  XING Suxia
Affiliation:School of Artificial Intelligence,Beijing Technology and Business University,Beijing 100048,China
Abstract:Alzheimer’s Disease (AD) is a progressive neurodegenerative disease with hidden causes, and can result in structural changes of patients’ brain regions. For assisting the doctors to make correct judgment on the condition of AD patients, an improved Three-Dimensional Principal Component Analysis Network (3DPCANet) model was proposed to classify AD by combining the mean Amplitude of Low-Frequency Fluctuation (mALFF) image of the whole brain of the subject. Firstly, functional Magnetic Resonance Imaging (fMRI) data were preprocessed, and the mALFF image of the whole brain was calculated. Then, the improved 3DPCANet deep learning model was used for feature extraction. Finally, Support Vector Machine (SVM) was used to classify features of AD patients with different stages. Experimental results show that the proposed model is simple and robust, and has the classification accuracies on Subjective Memory Decline (SMD) vs. AD, SMD vs. Late Mild Cognitive Impairment (LMCI), and LMCI vs. AD reached 92.42%, 91.80% and 89.33% respectively, which verifies the effectiveness and feasibility of the proposed method.
Keywords:Alzheimer’s Disease(AD)  functional Magnetic Resonance Imaging(fMRI)  3DPCANet  Support Vector Machine(SVM)  mean Amplitude of Low-Frequency Fluctuation(mALFF)
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号